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ABSTRACT

Real-time algorithms which increase the ability to detect
off-nominal Space Shuttle Main Engine (SSME) conditions
during flight can improve Shuttle safety and reliability. Multi-
parameter fault detection techniques have been targeted
because they do not rely on a single parameter for fault
information and thereby improve confidence in the detection.
Furthermore, no assumptions regarding failure modes are
required, permitting the detection of previously unencountered
or unanticipated failures. The Clustering Algorithm, a multi-
parameter fault detection approach that was originally trained
and validated on SSME ground test firing data, was slightly
modified and applied to SSME historical flight data; the
application is documented in this report. Preliminary studies
were conducted to assess the impact of different engines,
different missions and different thrust profiles on the
performance of the Clustering Algorithm. The algorithm
successfully predicted sixteen performance parameters during
mainstage operation of the engine when applied to nominal data
sets and provided indications of off-nominal behavior when
applied to data from an engine which had experienced an offset
in one of the control parameters. The information from the
Clustering Algorithm is intended to enhance the diagnostic
information available to the NASA Johnson Space Center
control room engineers during flight.

NOMENCLATURE
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HPOT High Pressure Oxidizer Turbine
ISC Johnson Space Center

LPFP Low Pressure Fuel Pump
LPOP Low Pressure Oxidizer Pump
LeRC Lewis Research Center

LRU Line Replaceable Unit

MCC Main Combustion Chamber

MSFC Marshall Space Flight Center
OPOV Oxidizer Preburner Oxidizer Valve

PBP Preburner Boost Pump

SRB Solid Rocket Booster

SSME Space Shuttle Main Engine
STS Space Transportation System
INTRODUCTION

Engineers at the NASA Johnson Space Center (JSC)
Central Control Complex (CCC) are responsible for monitoring
the Space Transportation System (STS) Main Propulsion
System following liftoff. The Main Propulsion System consists
of three Space Shuttle Main Engines (SSMEs). In an effort to
further facilitate and automate this activity, CCC engineers are
considering the use of anomaly detection algorithms to enhance
the current Space Shuttle Main Engine safety system during
flight. Anomaly detection algorithms could improve Shuttle
safety by distinguishing between nominal and off-nominal
engine operation; some algorithms have the potential to provide
additional information on failure type or location.

The current safety system on the SSME comsists of
redlines on parameters which have sensor hardware
redundancy. When a qualified channel exceeds its redline limit
for three consecutive cycles, engine shutdown is initiated.[1]
These redlines were established in response to material and
structural considerations. In looking at the SSME ground test
firing database and, in particular, at the anomalies that have
occurred, it was found that failure information is frequently
present in the performance data prior to redline cutoff.[2]-[5] In
fact, several parameters typically provide corroborating
evidence that an engine hardware anomaly is occurring.

In order to improve fault detection capability for the
SSME, the NASA Lewis Research Center (LeRC) funded the
development of several multi-parameter fault detection
approaches to cover both startup and mainstage operation of the
engine.[4]-[7] Multi-parameter approaches combine the
information from several non-redundant sensors into a single
metric representative of the engine's condition. Multi-
parameter approaches are desired since they do not rely on a
single parameter for fault information and thereby improve
confidence in the detection. Multi-parameter approaches are



inherently more robust to sensor failures than the current single
parameter redlines. Moreover, multi-parameter approaches
have the potential to provide fault isolation information.
Emphasis in these studies was placed on the earliest possible
detection of an off-nominal engine condition without issuing
any erroneous fault indications. Specific failure modes were
not targeted since the algorithm was designed to detect any off-
nominal condition, including those not previously encountered.

One promising mainstage multi-parameter approach
developed under the direction of NASA LeRC is the Clustering
Algorithm. The Clustering Algorithm was extensively trained
and validated on historical ground test firing data. For many of
the major failures, the Clustering Algorithm indicated off-
nominal engine conditions significantly earlier than redline
cutoff. The algorithm also monitored several NASA Marshall
Space Flight Center (MSFC) Technology Test Bed engine
firings in real time.[7]

In order to assess the potential benefits that this algorithm
could provide to CCC engineers, the Clustering Algorithm was
applied to historical flight data; this report documents the
application. In making the transition to flight data several
modifications were introduced into the original algorithm in
order to improve the fault coverage of the algorithm and to
make the algorithm more consistent with the fault detection
methodology used by experienced analysts. These
modifications were made in response to issues raised by CCC
engineers and recommendations made by the SSME Controller
Enhancement Study team led by MSEC.

The clustering algorithm uses models which predict the
nominal behavior of the engine. Data from five missions were
used to train and evaluate Clustering Algorithm model sets. Of
primary - interest in this investigation was the prediction
capability of the model sets. Four flight engine Clustering
Algorithm model sets were generated; one used data from three
engines, each from a different mission, while the other three
used data from a single engine on a single mission. The
capabilities of Clustering Algorithm model sets based on single
and multiple engine data sets were compared. In addition,
validation data sets were selected to assess the impact of
different engines, different missions and different thrust
profiles on the performance of the Clustering Algorithm under
nominal conditions. Finally, one historical off-nominal data set
was presented to the Clustering Algorithm.

THE JSC BOOSTER FLIGHT CONTROL TEAM

The Mission Operations Directorate at JSC is tasked with
monitoring all Space Shuttle systems from liftoff through
touchdown.  Responsibilities include verifying that all
hardware and software perform correctly and, if not, identifying
impacts and producing procedures to handle the off-nominal
conditions. These procedures must, at all times, protect the
safety of each crew member, while completing the maximum
number of flight objectives. The flight control team is
composed of 18 different disciplines. The Booster flight
control team is responsible for monitoring the SSMEs in real
time. ’

The Booster flight control team consists of the Main
Propulsion Operator, the Main Engine Operator, and the
Booster Officer. The Main Propulsion Operator monitors

pressures, temperatures and flow rates in the External Tank, the
Solid Rocket Boosters and the SSME propellant feed system.
The Main Engine Operator is responsible for monitoring the
overall health of each engine. The Booster Officer monitors the
data seen by the two operators and interacts with other
disciplines on the flight control team as required.

The major part of the Main Engine Operator’s
respounsibility is to determine if the SSMEs are running at their
preflight predicted values for mixture ratio, thrust level and
specific impulse. Any discrepancies are reported to the Booster
Officer; this notification includes quantitative values for the
mixture ratio, thrust and specific impulse. These values are
used by the Flight Dynamics Officer to determine if, based on
the current vehicle position velocity and remaining usable
propellant, the launch can be successfully completed.

The Main Engine Operator must also determine if an off-
nominal case is occurring. Currently, nine pre-determined off-
nominal cases are considered. Although these pre-determined
cases have been adequate in diagnosing the two missions, STS-
1 and STS-44, which have encountered off-nominal engine
conditions to date, the technical community feels the need to
develop a program which would assist the Main Engine
Operator in detecting off-nominal cases which are currently not -
covered. Therefore, the Clustering Algorithm, a multivariable
approach, is being investigated as a possible solution to
identifying off-nominal engine performance without a priori
fault information.

THE CLUSTERING ALGORITHM: BACKGROUND
AND IMPLEMENTATION

The Clustering Algorithm is based on classical pattern
recognition techniques. Nominal engine performance is
characterized by establishing regions of nominal behavior in n-
dimensional space. These regions are then used to classify new
data when the algorithm is being used for fault detection. If a
new n-dimensional data point falls within an empirically-
derived threshold of the regions established by the nominal
training data, this point is considered nominal. I the new n-
dimensional data point does not fall within the empirically-
derived threshold of the nominal clusters established by the
training data, the new data point may indicate a faulty
condition. Off-nominal classifications on multiple consecutive
time slices can be used to declare an engine anomaly.

No assumptions regarding specific failure modes are
required. Instead, the usefulness of the Clustering Algorithm
depends on adequate characterization of nominal engine
behavior. Nominal engine data are reduced into representative
regions, each labeled by a cluster center, using a data clustering
technique which makes a single pass through the data. These
cluster centers are stored in the form of regression equations,
where the inputs are the parameters given in Table 1. The Main
Combustion Chamber (MCC) pressure is a controlled
parameter which strongly affects the -overall engine
performance, and the MCC Reference Pressure is the
commanded value for this controlled parameter. The Low
Pressure Fuel Pump (LPFP) discharge temperature and pressure
and Low Pressure Oxidizer Pump (LPOP) discharge pressure
represent engine inlet conditions. The need for retaining
individual cluster center information is eliminated by the use of



regression equations. Furthermore, the regression equations
provide the ability to interpolate between nominal cluster
centers and thereby provide better coverage of the nominal
space. Gaps in nominal coverage can occur since not all
nominal states are typically available in a training set. There is
one regression equation for each of the n parameters; the
collection of regression equations is referred to as a model set,

Table 1: Parameters used as inputs and outputs for the
Clustering Algorithm.

Model || Model

Parameter Description Tnput || Output

"MCC Pressure CH Al x
MCC Reference Pressure
LPFP Discharge Pressure CH A
LPFP Discharge Temperature CH A
LPOP Discharge Pressure CH A
MCC Coolant Discharge Pressure
MCC Coolant Discharge Temperature
LPOP Shaft Speed-
LPFP Shaft Speed
OPOV Actuator Position
FPOV Actuator Position
HPFP Discharge Pressure
HPFP Coolant Liner Pressure CH A
FPB Chamber Pressure
PBP Discharge Pressure
HPOT Discharge Temperature
PBP Discharge Temperature CH B
Fuel Flowrate
HPFT Discharge Temperature CH A
HPOT Discharge Temperature CH A

oM M
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HPFP Shaft Speed CH A

For fault detection, the model set provides an estimate of
a nominal n-dimensional cluster based on the five inputs. Asa
result, each parameter has a residual, or difference between
actual and predicted values, associated with it. The individual
residuals are combined into a total residual, or distance,
between the measured data point and the predicted n-
dimensional nominal cluster. In this study, the five input
parameters were used to estimate 16 output parameters. The
outputs are listed in Table 1; these output parameters represent
various temperatures, pressures, flowrates, valve positions and
shaft speeds throughout the engine.

The use of the Clustering Algorithm for fault detection is

summarized as follows:

1. A collection of regression equations, or model set, is
selected.

For each time slice:

2. Each of the five input and sixteen output parameters
is normalized by the operating range of the
parameter under consideration.

3. For each of the sixteen output parameters, a

normalized predicted value, S, is generated based
on the a regression equation applied to the five
inputs.

4. The difference, d(i), between actual and predicted
values is computed for each of the output
parameters:

(i) =S,() -5,()
where S,(i) is the normalized measured value for
sensor i.

5. The individual difference values are combined into a

total distance, D, as follows:

D= ,)-:1 [d®1°

where n is the total number of parameters in the
multidimensional space’ (n=16).

6. In the study that considered historical ground test
firing data, the total distance was compared to a
preset event detection threshold. An engine fault
was declared when the threshold was exceeded on
multiple consecutive time slices. .

Additional sensitivity to possible system anomalies coul,

be achieved by monitoring the total distance for changes instead
of thresholding the magnitude of the total distance.
Furthermore, the individual parameter residuals could be used
to provide some fault isolation information. If all parameters
associated with a particular component exhibit changes in their
residuals, a fault in that component is likely. Such fault
isolation is useful since different actions may be required
depending on the fault location. Furthermore, fault isolation
information can be provided even in the event of a previously
unencountered failure mode.

CLUSTERING ALGORITHM APPLICATION: MODEL
SET GENERATION

The original Clustering Algorithm developed using
ground test firing data relied on a database of nominal model
sets in order to account for between-test variations. These
variations arise due to changes in thrust profiles and venting
schedules, differences in test duration and test stand, changes in
Line Replaceable Unit (LRU), or component, combinations,
and changes in engine mixture ratio. Many of these factors are
also relevant for flight data. However, it is desirable to limit the
number of model sets required for coverage of all engines of a
given design. For this reason, preliminary studies were
conducted to assess the impact of different engines, different
missions and different thrust profiles on model prediction
accuracy for flight data.

Four new Clustering Algorithm model sets were generated
using flight data. Since the particular LRU combination that is
flown is not generally tested on a test stand, the selection of
ground test firing data to be used in generating models for flight
is not straightforward. Furthermore, thrust profiles and engine
inlet conditions vary widely from test to test; flight profiles are
much more repeatable. Therefore, flight data sets were used to
develop model sets in this study. Four different nominal model
sets based on flight data were generated. Three model sets used
data from a single engine on a single mission while the fourth



model set used data from three engines, each from a different
mission. -

When a single engine firing is used for model
development, the data set is first reduced to a small number of
cluster centers, typically 2.5% of the original number of data
points, using a data clustering technique. Multivariate
nonlinear functions are then constructed using least squares
regression to predict these cluster centers as a function of the
five input parameters. When multiple engine firings are used to
create a model set, data from each firing is clustered separately.
The cluster centers are then combined and regression
coefficients are determined.

Data from five STS missions were considered for model
development and evaluation: STS-044, STS-056, STS-058,
STS-060 and STS-061. The three engines used in each STS
mission are referred to as the Center (C), Left (L) and Right (R)
engines. In addition, each engine on a mission has a numerical
designation. Identical engine numbers do not indicate identical
LRU combinations. Three of these missions were used for
model generation: STS-058, STS-060, STS-061. As can be
seen from Table 2, these three missions do not have any engines
in common. In addition, each of the missions used for model
generation has a slightly different power level profile; Figure 1
shows a typical flight power level profile. The actual power
level achieved during the thrust bucket, the interval from about
30 to 70 seconds, is determined during flight. The portion of the
profile immediately following the start transient and prior to the
thrust bucket is also mission dependent. The data sets used to
generate the single and multiple engine model sets are
summarized in Table 3.

Table 2: Missions and engines used for Clustering
Algorithm development and evaluation.

. . Center Left Right
Mission Engine Engine Engine
STS-044 2015 2030 2029

STS-056 2024 2033 2018
STS-058 2024 2109 2018
STS-060 2012 2034 2032

STS-061 2019 2033 2017

Each model set was tested on all data sets not used in the
construction of that model. This includes data from all three
engines of STS-044 and STS-056. STS-056 was selected
because it contains Engine 2024 for which a model was created
on STS-058. It should be noted, however, that both high
pressure turbopumps on Engine 2024 were replaced between
these two flights. Finally, STS-044 was selected because it is
one of the two flights which experienced off-nominal engine
behavior.

In evaluating the performance of the Clustering
Algorithm, both the total distance and the individual parameter
residuals were monitored. A small total distance, which is not

affected by nominal engine phenomena such as Solid Rocket
Booster (SRB) separation and power-level changes, is desired.
Flat individual parameter residuals, which indicate that the
input parameters adequately predict the variations in the
modeled parameter over time, are needed to achieve a flat total
distance. Flat residuals are characterized by a relatively small
standard deviation when computed over the entire mission
following the start transient and prior to engine cutoff.
Individual parameter residuals can also be examined for means
which are offset from zero. Test-to-test parameter mean offsets
have been attributed by data analysts, in large part, to hardware
changeouts. Biasing schemes have been used to effectively
deal with such offsets.[8] Therefore, in this study, variations in
the residual were considered to be more important than the
actual residual magnitude.
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Figure 1. Typical Flight Profile of the SSME.
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Table 3: Data used to generate Clustering Algorithm

model sets.
Model Set Number Model Set Created
From
1 STS-058 C
2 STS-060 C
3 STS-061 C
4 STS-058 C
STS-060 C
STS-061 C
RESULTS AND DISCUSSION

Four model sets were created for the Clustering
Algorithm. As indicated in Table 3, three of the model sets
represent a single engine on a single mission, while the fourth
model set was created using three engines, each from a different
mission. Of primary interest is the ability of the Clustering



Algorithm to predict the nominal variations in the sixteen
output parameters. The total distance, or combination of the
individual parameter residuals, was also qualitatively
addressed. For a nominal flight, flat individual parameter
residuals are desired since they lead to a flat total distance.

For example, Model Set 4, based on data from multiple
missions, was used to generate predictions for the left engine of
STS-060. Plots depicting the total distance and selected
individual model residuals are given in Figures 2 (a) - (d). The
parameter residuals have been denormalized prior to
presentation while the overall distance represents the
combination of normalized residuals.  Currently, each
parameter residual is normalized by the nominal range of that
parameter. The total distance shown in Figure 2(a) shows slight
indications of power-level transitions and SRB separation. This
is due to the fact that several individual parameter residuals
were affected by these phenomena. As indicated by the typical
flight power level profile shown in Figure 1, the engines
throttle down for about 40 seconds, beginning at approximately
30 seconds following engine start, as the shuttle passes through
the region of maximum dynamic pressure. At approximately
460 seconds a gradual deceleration is initiated to adhere to the
3-g throttle limit established for the astronauts. SRB separation
occurs at approximately 120 seconds. The Low Pressure Fuel
Pump (LPFP) shaft speed residual shown in Figure 2(b), for
example, shows an increase coincident with SRB separation.
An example of power-level dependency can be seen in the Fuel
Preburner (FPB) chamber pressure residual shown in Figure
2(c). Consideration of an expanded input set and the selection
of optimal regression equation forms could be investigated to
address these dependencies.
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Figure 2. Selected Model 4 resuits on STS-060 Left Engine:
(a). the combined distance value, (b). the LPFP shaft speed
model residual, (c). the FPB chamber pressure model
residual and (d). the HPFP discharge pressure model
residual.

The performance of Model Set 4 on the left engine of STS-
060 can be qualitatively contrasted to the performance of Model
Set 1, based on data from a single mission, on the same data set.
The overall distance is shown in Figure 3(a). The total distance

for Model Set 1 exhibits stronger power-level dependence than
the total distance for Model Set 4. Likewise, the individual
parameter residuals for Model Set 1, shown in Figures 3(b)-(d),
show a stronger power-level dependence than the
corresponding residuals generated by Model Set 4. The High
Pressure Fuel Pump (HPFP) discharge pressure residuals shown
in Figures 2(d) and 3(d), for example, both show slight shifts
around the time of SRB separation. Changes in the residual
with power level, however, are more pronounced for the
predictions generated by Model Set 1. Although model sets
based on single data sets, Model Sets 1, 2, and 3, were also
observed to produce relatively flat distance plots on some data
sets, the multiple engine model was more consistent in
producing this behavior for the nominal data sets evaluated.
These results indicate that using multiple data sets in training
may provide better coverage of all possible conditions that will
be encountered during flight and therefore will result in models
that can more accurately predict performance parameters on a

new mission. ‘
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Figure 3. Selected Model 1 results on STS-060 Left Engine:
(a). the combined distance value, (b). the LPFP shaft speed
model residual, (c). the FPB chamber pressure model
residual and (d). the HPFP discharge pressure model
residual.

Engine hardware does not appear to play a large role in the
ability of the regression equations to accurately predict
behavior. Model Set 1, trained on data from the center engine
of STS-058, Engine 2024, was applied to the data from the
center engine of STS-056, also Engine 2024. The residual
statistics for the left and right engines of STS-056 were
comparable to and sometimes better than those for the center
engine. This could be partially attributed to the fact that several
LRU component changeouts occurred for engine 2024 between
STS-056 and STS-058. Because these component changeouts
are so frequent, hardware specific models are not practical and
do not seem to be indicated. Rather, models that adequately
capture all of the nominal phenomena expected during flight are
required.

In addition to the nominal data sets described above, data
from STS-044, a mission on which one engine experienced



apparent off-nominal behavior, were also considered. The left
engine on STS-044 exhibited simultaneous upward shifts in the
two A channels and downward shifts in the two B channels of
the MCC pressure at 270 seconds into the mission. Although
the shift represented a slight instrumentation problem,
engineers in the control room should be alerted to the condition
as soon as possible since an erroneous chamber pressure

reading affects thrust and specific impulse and therefore the

ability to successfully complete launch. One of the A channels
of the MCC pressure is typically used as an input to the
regression equations. For this mission, additional results were
obtained by using a B channel as an input to the regression
equations. In analyzing the residuals of some of the modeied
parameters where an A channel was used as an input, Figures 4
(a) and (b), it can be seen that the parameter shift in the A
channel physically corresponds to the change being
experienced by the engine. When either B channel is used as an
input, several parameters show predicted shifts opposite to
those observed; the corresponding increase in residuals is
illustrated in Figures 4(c) and (d). The overall distance plots are
shown in Figures 5 (a) and (b). When an A channel is used as
a Clustering Algorithm input, the total distance is not affected
at 270 seconds. When a B channel is used as an input, the total
distance shows a slight shift at 270 seconds. All of these results
suggest an instrumentation problem in the two B channels of the
MCC pressure. A model for the MCC chamber pressure could
be used to arbitrate the discrepancy between the two channels.
The average of the four MCC pressure channels is actually
constant during this event because the controller is maintaining
this average value at the commanded reference value. As the B
channels approach the true (lower) value of the chamber
pressure, the engine throttles up slightly to maintain the average
MCC pressure value. In reality, the engine was operating at
slightly less than the commanded chamber pressure prior to 270
seconds.
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Figure 4. STS-044 results for parameters using an MCC
pressure A channel as an input: (a). the LPOP shaft seed and
(b). the preburner boost pump discharge pressure. STS-044
results for parameters using an MCC pressure B channel as
an input: (c). the LPOP shaft speed and (d). the preburner
boost pump discharge pressure.
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Figure 5. STS-044 results for the total distance with (a.) an
MCC pressure A channel input and (b.) an MCC pressure
B channel input. -

CONCLUDING REMARKS

The Clustering Algorithm, an anomaly detection
algorithm developed to enhance the current SSME redline
system and originally trained and validated on ground test firing
data, was trained on and applied to historical flight data. Since
the Clustering Algorithm indicated off-nominal engine
conditions significantly earlier than redline cutoff when applied
to historical ground test firing failure data, the Clustering
Algorithm is also being investigated for its ability to provide
early diagnostic information to the JSC engineers responsible
for monitoring the SSMEs during flight.

Flight data were used to generate four Clustering
Algorithm model sets. These model sets were then applied to
engines from five missions. Frequent LRU changeouts make
model sets based on specific hardware impractical. Analysis of
model residuals shows that model performance is independent
of hardware configurations encountered in the training data, but
rather is driven by the variety of examples available in the
training data. Therefore, model sets based on multiple flights
are indicated; such models are more likely to successfully
capture a wide range of nominal engine phenomena.

The Clustering Algorithm regression equations were able
to capture most of the variations in the parameters modeled;
however, examination of individual parameter residuals
revealed non-zero residual mean and some dependency on
power-level transition and SRB separation. For model sets
based on data from single and multiple engines, the nonzero
residual means are primarily attributed to the test-to-test or
flight-to-flight variation in hardware configurations, which
could be addressed using biasing techniques. The residual
dependency on scheduled events leads to a total distance that
also varies with scheduled events. To address these
dependencies, consideration of an expanded input set and the
selection of optimal regression equation forms for each
parameter could be explored.

This stage of the analysis indicates -that the SSME



parameters selected can be modeled across various nominal
operating profiles and various engine configurations.
Incorporation of the proposed modifications, with subsequent
verification and validation by JSC and LeRC personnel, should
allow the implementation of the Clustering Algorithm as an
anomaly detection tool during flight.
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